The NavVis VLX is no ordinary indoor scanner.
It’s the world’s most accurate wearable mapping device with simultaneous mapping and localization (SLAM) technology. Fast, precise, and compact, it allows operators to efficiently capture as-built indoor data for visualization in the AEC industry and elsewhere.
Sensors first
Headquartered in Munich, Germany, NavVis specializes in developing next-generation technology that enables accurate mapping of indoor spaces. And given that the wearable NavVis VLX system‘s accuracy had to compete with terrestrial solutions, the scanner’s sensor positioning would be the designers’ top priority.
After many iterations, the team zeroed in on an innovative design that combines two multi-layer LiDAR sensors with four high-res cameras. Together, they measure and map a 360-degree view of the indoor space – mounted at the perfect distance above the operator’s head to keep the operator out of the field of view while allowing the user to see everything in the environment.
Everything in easy reach
This led to a uniquely complicated challenge to keep every user interaction accessible. The touchscreen in particular required a lot of iteration. It had to be in the field of view, but still allow the user to see the floor to find ground control points and avoid hazards.
With so many variables to find the best display angle and positioning, the team once again turned to 3D printing to validate their ideas in more accurate detail.
Joining PVC pipes with 3D printed angles allowed them to test configurations as quickly as possible. The PVC pipes could be easily cut to any length, leaving just the connecting angles to be 3D printed.
“We wanted to have precise angles to really prove the CAD,” said Nils. “This meant it was the perfect mixture of rapid prototyping and real precision.”
With this technique, the team also became well-acquainted with the dimensional accuracy of their in-house Ultimaker 3D printers. Although all 3D prints shrink a small amount as the material cools, they worked out the shrinkage by printing multiple connectors with 0.1 mm difference between each version.
Designed to fit any body
“Creating a device that fits the human body brings a lot of challenges.” explained Sarah. “But with 3D printing, we could make lots of iterations to get to a good combination of the right size and weight.”
The team’s goal was to create an ergonomic experience that would feel like the user was wearing a backpack on their chest. They loaded filled water bottles onto rough wooden and 3D printed shapes to simulate that weight. If any test user found it uncomfortable, Sarah and Nils knew that they needed to make an adjustment.
This was especially necessary for the shoulder pads. To find the optimal design, the team adjusted settings in Ultimaker Cura to create fast “draft” prints, before progressing to detailed prints. This approach ensured the pads would be comfortable for anyone – without the chance of NavVis VLX sliding off.
Rapid prototyping during a pandemic
To create these fast iterations, the team relied on the workhorse output of the Ultimaker 2+ and Ultimaker S5.
Thanks to the printers’ reliability, Sarah and Nils developed a 24-hour iteration cadence that allowed them to test new ideas as quickly as possible:
You could just hit “print” on Friday and go home for the weekend and come back on Monday and it was finished.
Of course, when COVID-19 forced most of the designers to work from home, their workflow had to change. For this, they depended on the remote 3D printing capability of the Ultimaker S5 and Ultimaker Digital Factory.